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The scattering matrix for rapidly oscillating potentials 

W 0 Amrein and D B Pearsontt 
Department of Theoretical Physics, University of Geneva, 121 1 Geneva 4, Switzerland 

Received 30 August 1979 

Abstract. For Schrodinger Hamiltonians with potentials that are rapidly oscillating near 
infinity, we show that the T matrix is in the Hilbert-Schmidt class, implying finiteness of the 
total scattering cross section. We also estimate the high-energy behaviour of the cross 
section. 

In the Hilbert space L2(R3), we consider self-adjoint Schrodinger operators of the form 
H = P 2 +  V, where P is the three-component momentum operator and V is the 
multiplication operator by a real-valued function U (x). More precisely, H is assumed to 
be a self-adjoint extension of the symmetric differential operator - A +  v(x) defined on 
some suitable subset of L2(R3) .  We use the notations of Amrein and Pearson (1979) 
and set in particular Ho = P 2  and U, = exp (-iHot). If ?denotes the Fourier transform 
off,  then correspondence f - { f h  ( U ) } ,  where 

1 ~ , ( u ) = - A ~ ’ ~ ~ ( J A u )  
JZ 

[A E (0, CO), U E S ( ’ ) =  the unit sphere in R3], defines a unitary map from L2(R3)  onto 
L2([0, CO); L2(S”’)) which diagonalises Ho. Let S(A) denote the scattering matrix at 
energy A (i.e. S(A) is an operator in Xo=L.2(S‘2’)). The total scattering cross section, 
averaged over all initial directions, for scattering of a beam of non-relativistic particles 
at energy A off the potential U(X) is given by 

@ ( A )  = V A - ’ \ I R ( A ) ~ I ~ ~  (2) 

where R ( A ) = S ( A ) - l o ,  lo is the identity operator in X o  and IIAIIH~ denotes the 
Hilbert-Schmidt norm of the operator A (see Amrein and Pearson (1979) for details). 

In a previous paper (Amrein and Pearson 1979) we introduced a time-dependent 
method of estimating the averaged total scattering cross section @ ( A ) .  We found that 
@ ( A )  is finite provided the potential v(x) tends to zero more rapidly than / X I - ’  as 1x1 +CO, 

whereas for more slowly decreasing potentials a(A) is, in general, infinite at all energies 
A .  In the present paper we apply this method to potentials that are rapidly oscillating 
near infinity. The amplitude of oscillation may decrease to zero very slowly or even 
diverge. We obtain the existence of the wave operators, the finiteness at almost all 
energies of lIR(A)I/HS, and hence of @ ( A ) ,  as well as a bound on the high-energy 
behaviour of @ ( A ) .  In proposition 1 we consider a simple class of spherically symmetric 
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potentials U (lxl), and then discuss some possible generalisations. For other results on 
oscillating potentials we refer to Chadan and Martin (1979), Pearson (1979) and the 
papers quoted there. 

In what follows, p will always be a continuously differentiable function from (0, CO) 

to R vanishing near 0 and near 00. For each such p, we denote by P(p) the orthogonal 
projection onto the following subspace X ( p )  of L2(R3): 

%(P) = { f l f h  = )g with g E %d. (3) 

We shall use the following three results which are immediate consequences of those 
contained in 5 3 of Amrein and Pearson (1979). 

(i) Let (I? be the multiplication operator in L 2 ( R 3 )  by a function 4(x)  which is twice 
differentiable and satisfies q5(x)+ 1 as ]xi-, 00. Then 

m oc 2 I_, dAp(A)211R(A)IIfIss ( I-, drl(H(I?-(I?Ho)~rP(p)l/Hs) (4) 

(ii) The finiteness of the integral on the RHS of (4), for each p in the class indicated 
above, implies the existence of the wave operators 

O,.(H, H ~ )  = s - lim eiHt ( 5 )  f+*m 

(iii) Let W be the multiplication operator by a real-valued function w (x) satisfying, 
for some 0 s M < CO and some v > 4, 

Then 

Proposition 1. Let U : (0, co)+R be such that, for some finite ro and all r 2 ro: 
m 

lu(r)j < cra and I ds v(s)I  s cr-' (8) 

with p > 2 and p - a  > 3. Then ( a )  the wave operators n,(H, Ho) exist; ( 6 )  for each 
admissible p : 

(c) for each E > 0, 

Proof. Let 4:  [0, cO)-tR be a C" function such that $ ( r )  = 0 for 0 s r s ro and $ ( r )  = 1 for 
r 2 2ro. Define (I? to be the multiplication operator by the function ~ ( I x I ) ~  where 
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Now 
m 

q5'(r) = @(r)[ 1 +ITm du ds u ( s ) ]  - $ ( r )  ds u ( s ) .  
r 

By (8), and since 4' has compact support in (0 ,  CO), we have 

14'(r)I s cl(1 + r)-'. 
Furthermore: 

2 w o ( r ) = - q 5 f f ( r ) - - d f ( r ) + u ( r ) q 5 ( r )  
r 

= - $ " ( r ) [  l+[rmdu[umdsv(s)]  +2$'(r) I rmdsv(s )  

m m 2 
r r U 

--d '(r)+v(r)$(r)  du I ds u ( s ) .  (13) 

By (8) and (12), the absolute value of the last summand in (13) is majorised by 

where WO is the multiplication operator by wo(ix l )  and W k  that by w k ( . x ) =  

.xkl.xl-lqh'(lXl). Since wo and w k  all satisfy the condition (6), we obtain from (15) and (7) 
that 

m 

dtll(HQ,--Ho)~~p(p)llHs< CO. i, 
In view of (4), this proves (b).  The existence of R,(H, Ho) follows from (ii), and the 
high-energy bound (10) is obtained as in theorem 3 of Amrein and Pearson (1979) (the 
dominating term at large A is again that arising from X k  I ! w k p k u t p ( p ) l \ H S .  

The idea of the proof of proposition 1 is to construct the multiplication operator Q, 
from a function q5 which may be regarded, for large r, as an approximate solution of the 
zero-energy Schrodinger equation: 

-- d2q5 + vq5 = 0. 
dr2 
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Thus, for r > 2ro, equation (1 1) implies d24/dr2 = U which, with q5 + 1 as r + a, gives an 
approximate solution to (16). Proposition 1 may be extended to a wider class of 
potentials by obtaining more detailed estimates of the solutions of (16). 

Let 
aJ 

w(r) = - ds v ( s )  (17) 

and consider the pair of coupled integral equations 
a? m 

4&)= 1 + r I r  ds ~ ( s ) S ( s ) - [ ~  ds w(s)[40(s)+sB(s)l 
a? (18) 

8(r)  = w(r)&(r )+I  ds w ( s ) S ( s ) .  
r 

Differentiating the first equation gives 

d&/dr = 8 (19) 

de/dr = v4,, (20) 

and differentiating the second, using (17) and (19), gives 

so that 4o is a solution of (16). Moreover do + 1 as r + CD. 

case, for some E > 0, 
To solve (18) for sufficiently large r, we shall suppose that ~(1x1) satisfies (6) in which 

.m 

Estimates of solutions of (18) may more readily be carried out by means of the 
substitution 

x(r) = 8(r) - w (r)40(r)  (22) 
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On using Schwarz's inequality with (21), we have 
m CO 

dslw(s)/ = I ~ s [ s ( ~ + " ' ~ w ( s ) ] s - ( ~ + ~ ) / ~  s constant x r-1-E'2. 
r 

Also 

1 "  
ds w 2 ( s )  SF ds s3+'w2(s). 

Hence 

whereas 

One  may now deduce inductively from (23) that, for given R, constants A,, and B, 
(depending on R )  can be found such that for r > R 

lqb~+')(r)-q5~'(r) l  <A,,r-'-'/* 

lX(n+l)(r) -X(n'(r)l s B,,r-'-' 

and 

(A,+' S constant x r-1-E/2(A,, +El,). 

Thus, if R is chosen so large that constant x R-1-r'2 < 1, we see that the series C:=OA, 
and Er=oB,, are convergent, and we may deduce that the iteration converges to a pair of 
functions 40, ,y for which, as r + CO, 

1 
qbo(r) = 1 + o( 7) 

1 
x ( r )  = o( -) r3+' 

From (19) and (22) we obtain the estimates 

We may now carry through the argument of the proof of proposition 1, replacing (1 1) by 
4 ( r )  = +(r)&(r) and taking r03max(M, R ) .  We then have: 

Proposition 2. Let v : (0, w)+R be such that (21) holds for some finite M, where w(r) is 
defined by (17) (as an improper Riemann integral). Then the conclusions (a) and ( b )  of 
proposition 1 follow. 
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Remark 1. To estimate high-energy behaviour of cross sections, we have to replace, as 
in our previous paper, the condition (21) by Iw(r)l sconstant x r-2-'(E >0) for r > R. 
Under this condition, conclusion ( c )  of proposition 1 also follows. 

Examples. Let u(r) = crK sin (r'). Proposition 1 applies provided that y - K > 3 and 
y - 2~ > 4, and proposition 2 applies if y - K > 3. Choosing some particular values for 
K ,  we obtain the following examples in which y must be larger than y1 if one wants to 
apply proposition 1 and larger than y2 if one uses proposition 2: 

C 
u(r) = - sin(rY) 

r 

v(r) = c sin(rY) 

u(r) = 1066r1984 sin(rY) 

with y1 = yz  = 2 

with y1 = 4, y2 = 3 

with y1 = 3972, yz = 1987. 

Remark 2. The above methods may be modified to apply to a class of non-spherical 
potentials having the form, for 1x1 > R, 

v (x) = U & )  div h (x) (26) 

where uo is a scalar potential and h is a vector potential satisfying curl h = 0. (This 
condition is always satisfied when h ( x )  = g(/x/)x.) 

With 4 defined as before, replace (11) by 

4 ( x )  = 4 ( x ) [ l  +p(x)vo(x)l (27) 

where grad p = h. Then 

-Ad-t-v4 = ~ ( - v 0 A p - p A v o - 2 h . g r a d v o + v + u p u o ) + Z  

=q?(-pAvo-2h.grad v o + v p v o ) + Z  

where we have used the result that A p  = div h together with (26), and where 2 is a sum 
of additional terms having compact support. 

Now assume that p u o +  0 as 1x1 + CD and that 

F = l p A u o /  + lh .grad U O \ +  /upv01 + lp grad v01 + /uoh/ 

satisfies F ( x )  s C / X / - ~  for 1x1 3 ro and some p > 2. Then the conclusions of proposition 1 
follow. 

As an example of a non-spherical potential for which we may deduce finiteness of 
total cross section in this way we have, with E > 0, 

u ( x )  = u o ( x )  cos (r3+') 

provided, for example, u0 and its derivatives up to second order are bounded. 
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